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Abstract: Reliability testing of complex software at the system level is impossible 
due to the environmental constraint or the time limitation, so its reliability estimate 
is often obtained based on the reliability of subsystems or components. The 
connection structure was defined and the component-based software reliability was 
estimated based on it. For the present popular software with duplicated 
components, an approach to variance estimation of software reliability for complex 
structure systems was proposed, which has improved the hierarchical 
decomposition approach of variance estimation just for series-parallel systems. 
Experimental results indicated that the approach to variance estimation for 
reliability of software with duplicated components has advantages, such as the 
simple calculation process, small error result, and suitability for complex structure 
systems. Finally, the sensitivity analysis, used to identify critical components for 
resource allocation, could better improve the software reliability.  
Keywords: Component-based software, reliability, duplicated components, variance 
estimation, complex structure. 

1. Introduction 

For complex software, reliability testing at the system level is impossible due to the 
environmental constraint or the time limitation. In these situations, reliability can be 
estimated by conducting testing at subsystem or component levels. The software 
reliability estimate possesses uncertainty. In practice, people usually would rather 
select the software with lower and more accuracy reliability estimate than software 
with higher and less accuracy reliability estimate. 
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A common practice in software design is to use the same components in 
different locations of the software due to the requirement of the same or similar 
functions. For the same components, their reliability is often inferred from the same 
testing sample, that is, the reliability estimates of the same component are  
s-dependent. For software with duplicated components, the variance of the software 
reliability estimate needs computation of higher order moments involving iterations 
and discrete convolutions. These procedures are often time-consuming. If we ignore 
the dependence of the component reliability estimates, the variance of the software 
reliability estimate will be underestimated [1, 2].  

In recent years, researches on component-based software reliability have been 
paid more and more attention to. M o h a m e d, Z u l k e r n i n e [3] have proposed a 
simple CFG structure that represents inter-component and intra-component control 
flow transitions; W a n g  et al. [4] proposed a software reliability model which can 
deal with the cases of component interaction; F i o n d e l l a  et al. [5] presented an 
efficient, scalable approach to analyze the reliability of a component-based software 
system considering the correlated component failures. These researches can 
estimate the component-based software reliability, but do not consider how to 
estimate its uncertainty.  

For the uncertainty measurement of software reliability estimates, C o i t [6] 
demonstrated a flexible procedure to determine the confidence intervals for series-
parallel system reliability, when there was uncertainty regarding the component 
reliability information; Jin expanded Coit’s method to estimate the confidence 
intervals for series-parallel systems with arbitrarily repeated components [1], and 
proposed a hierarchical decomposition procedure to determine the variance of the 
reliability estimate for series-parallel systems [2]. H i l l  et al. [7] presented 
probability inequalities and results useful in defining the inequality-based reliability 
estimate for series-parallel system with repeated components. The above 
approaches are just for series-parallel systems and inadequate for complex structure 
systems.  

On the basis of the above problems, the connection structure is defined and the 
component-based software reliability is estimated based on it. For software with 
duplicated components, an approach to variance estimation of software reliability 
for complex structure systems is proposed, which improves the hierarchical 
decomposition approach of variance estimation just for series-parallel systems 
proposed by J i n [2]. 

2. A connection structure for component-based software 
First of all, the component-based software is hierarchized to multi layers and each 
layer involves several modules, that is, the software is devised into multiple 
modules in a hierarchical order from the system level down to the component level. 
The rule to define a module is in two parts: 1) at least one component is included; 
and 2) within a module, there is only one connection structure for sub-modules or 
components. The connection structure is defined as follows: 

Definition 1. A connection structure A  is defined as the connection structure 
of modules or components in the same layer for the hierarchical component-based 
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software, denoted by A=〈S, P, F, B, L, SC, BC, LC〉 where the elements represent a 
Sequence structure, Parallel structure, Fault tolerance structure, Branch structure, 
Loop structure, Sequence Call structure, Branch Call structure and Loop Call 
structure respectively. If a module contains only one component, the default 
connection structure is S, assuming that the component connects to itself. 

Definition 2. A connection structure flowchart is the running flow chart of the 
hierarchical component-based software which expresses the connection structure of 
modules or components in the same layer. 

Definition 3. The component-based software CS is denoted by 
CS { ( ), ( ), ( ) | 1, 2,..., }C i M i A i i m= =  where m is the number of layers, ( )C i  is the set 
of the i-th layer components, ( )M i is the set of the i-th layer modules, ( )A i  is the 
set of connection structures of the i-th layer modules or components. 

We assume that the transfer of control among components is a Markov 
process. Let the reliability of components ic  =1, 2,..., ,i n  be ir  and the transition 
probability from ic  to jc  be ,i jp , , =1, 2, ..., ,i j n  , [0,1].i jp ∈   

2.1. Sequence structure 
Components of the sequence structure are executed in sequence. The component 
sequence reliability is the product of component reliability. The sequence’s 
probability of occurrence is the product of each transition probability. Then the 
reliability of the sequence structure can be expressed as the product of component 
sequence reliability and the sequence’s probability of occurrence. In Fig. 1(a), the 
reliability of a sequence structure RS is 

(1)   
1

S 1,2 2,3 1, 1 2 , 1
1 1

... ... .
n n

n n n i i j
i j

R p p p r r r p r
−

− +
= =

= = ×∏ ∏   

2.2. Parallel structure 
In concurrent environment, the performance of the system can be improved by 
running multiple components concurrently. The reliability of a parallel structure can 
be expressed as the product of component reliability. In Fig. 1b, the reliability of the 
parallel structure RP is 

(2)   P 1 2
1

... .
n

n i
i

R r r r r
=

= =∏   

2.3. Fault tolerance structure 
Only one of the components with a fault tolerance structure runs at a certain time. 
In Fig. 1c, c1 2c ,…, nc , denoted by a dashed line, are the backup components of the 
primary component 1c . When all components in Fig. 1c fail, the fault tolerance 
structure is unreliable. The reliability of fault tolerance structure showed in Fig. 1c 
RF is 

(3)    F 1 2
1

1 (1 )(1 )...(1 ) 1 (1 ).
n

n i
i

R r r r r
=

= − − − − = − −∏   
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Fig. 1. A connection structure 

 

2.4. Branch structure  
In the branch structure, only one branch runs at a certain time. In Fig. 1d, the branch 
structure is denoted by a dash-dotted line. The reliability of the branch structure can 
be expressed as the sum of the product of branch reliability and the branch 
probability of occurrence. The reliability of the branch structure RB is 

(4)   
1

B 1,2 2, 2 1,3 3, 3 1, 1 1, 1 1, ,
2

... .
n

n n n n n n i i n i
i

R p p r p p r p p r p p r
−

− − −
=

= + + + =∑   

2.5. Loop structure 
Components with a loop structure are executed circularly. We add an entry 
component before the loop structure and an exit component after the loop structure 
in Fig. 1e. The reliability of the entry component entryr  and the exit component exitr  
is 1. Then the reliable state R and the unreliable state U are added as terminal states, 
representing the state of the reliable and unreliable output respectively, shown in 
Fig. 2; ,i j ip r  represent the probability that the execution of ic  produces the correct 
result and the control is transferred to jc . We can gain the transition probability 

matrix Q; (1, 2)k n +Q , the element of row 1, column n+2 for the k-th power of 
matrix Q represents the probability that starting from an entry component, the chain 
enters the absorbing state {R, U} at or before the k-th step. The value range of k is 
[0, ).∞  If there is at least one component 1c  then 0 (1, 2)n +Q = 1(1, 2)n +Q = 0. Let 

1

0
( )k

k

∞
−

=

= = −∑M Q I Q , (1, 2),n +M  the element of row 1, column n+2 for matrix 
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M, is the probability from an entry to an exit component. The reliability of the loop 
structure in Fig. 1e RL is 

(5)   

L exit

1,1 1 1,1 1

1 1

,1 , 1 ,1 , 1
1 1 1 1

(1, 2)

(1 ) 1 , 1;

(1 ) 1 , 1.
n n n n

n i i j n i i j
i j i j

R n r

p r p r n

p p r p p r n
− −

+ +
= = = =

= + =

⎧⎡ ⎤ ⎡ ⎤− − =⎣ ⎦ ⎣ ⎦⎪⎪
⎨⎡ ⎤ ⎡ ⎤

− × × − × × >⎪⎢ ⎥ ⎢ ⎥
⎪⎣ ⎦ ⎣ ⎦⎩

∏ ∏ ∏ ∏

M

  

 

 
Fig. 2. A loop structure after adding an entry, exit and states 

 
2.6. Call structure 

There are dependent relations among the components with a call structure. We 
adopt the Continuation Passing Style (CPS) to transform these dependent relations. 
CPS transformation makes the caller component divided into several program 
segments, as sub-components, each of them does not calling other components. 
There are three types of call structures. 

Type 1. Sequence call structure. The dependency relation in a sequence call 
structure is a sequence. In Fig. 1f, 1c  calls 2c ,…, nc  in the sequence and the 
transition probability from 2c , or 3c ,…,or nc  to 1c  is 1. 1c  is divided into sub-
components 1,1c , 1,2c , … , 1,nc . The input of 2c  is the output of 1,1c , the input of 1,2c  
is the output of 2c , …, as shown in Fig. 3a. According to (1), the reliability of the 
sequence call structure RSC is 

(6)    SC 1,2 1,3 1, 1,1 1,2 1, 2 1, 1,
2 1 2

... ... ... ,
n n n

n n n i j k
i j k

R p p p r r r r r p r r
= = =

= = × ×∏ ∏ ∏ ,   

where 1,1r , 1,2r , … , 1,nr  is the reliability of 1,1c , 1,2c , … , 1,nc  respectively. 
Type 2. Branch call structure. The dependency relation in a branch call 

structure is a branch. In Fig. 1g 1c  calls 2c , or 3c , …, or nc  and the transition 
probability from 2c , 3c ,…, nc  to 1c is 1. 1c  is divided into 1,1c  and 1,2c . In Fig. 3b, 

1,1c  is the part of 1c  before the branch and 1,2c  is the part of 1c  after the branch. 
The reliability of the branch structure can be calculated by (4). The reliability of the 
branch call structure RBC is 

(7)   BC 1,1 1,2 1,2 2 1,3 3 1, 1,1 1,2 1,
2

( ... ) .
n

n n i i
i

R r r p r p r p r r r p r
=

= + + + = ∑   

Type 3. Loop call structure. The dependency relation in a loop call structure 
is a loop. In Fig. 1h, 1c  calls 2c  circularly and the transition probability from 2c  to 
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1c is 1. 1c  is divided into 1,1c  and 1,2c . In Fig. 3c, 1,1c  is the part of 1c  before calling 

2c  circularly, and 1,2c  is the part of 1c  after calling 2c  circularly. The reliability of 
the loop structure can be calculated by (5). The reliability of the loop call structure 
RLC is 
(8)  ( ) ( )LC 1,1 1,2 1,2 1,2 2 2,1 2 1,2 1,2 1,1 1,2 2 2,1 2(1 ) 1 (1 ) 1 .R r r p p r p r p p r r r p r⎡ ⎤ ⎡ ⎤= × − − = − −⎣ ⎦ ⎣ ⎦  

 

 
Fig. 3. A call structure after division 

3. Reliability estimate of component-based software 

It is easily proved that any component-based software can be expressed by a 
connection structure flowchart. Without loss of generality, the connection structure 
flowchart of component-based software in Fig. 4a is used as an example. The main 
modules are denoted by a dash-dotted line in each layer. The layer 0 of software is 
denoted by 0S ; ,u vS  , 1, 2,...u v = , indicating that the sub-modules or components 
are connected in a sequence at its lower adjacent layer and it is the v-th module in 
layer u. The first subscript indicates the layer number, while the second subscript 
indicates the module number on that layer. Modules with other connection 
structures can be indicated by a similar expression. The hierarchical model of 
component-based software is shown in Fig. 4b.  

To standardize the hierarchy, artificial modules, denoted by a dashed line, are 
introduced to the intermediate layers, such that all modules at one layer can only 
communicate with their adjacent layers. The overall software reliability R in Fig. 4a 
can be expressed recursively as 

(9)   0 1,1 2,1 1,2 2,2 1,3 2,3

1,4 2,4 2,5 1,5 2,6

1 2 3 4 5

1 6 7 1 3

( [ ( )], [ ( , )], [ ( , )],

[ ( , ), ( , )], [ ( )]).
S S S L L F F

B S SC S S

R R R R r R R r r R R r r

R R r r R r r R R r

=
 

The true component reliability ,ir  1, 2,...,7,i =  is usually not available, and 
the estimate îr  is often used to substitute ir . For ic , n samples are tested for a 
period of time t and the number of failures is f. The reliability of ic  can be 
estimated using a binomial distribution [6]: ˆ ( )ir n f n= − ,   [ ]ˆ ˆ ˆ ˆvar( ) (1 )i i ir r r n= −  . 
After substituting îr  into (9), the software reliability estimate becomes 

(10)   0 1,1 2,1 1,2 2,2 1,3 2,3

1,4 2,4 2,5 1,5 2,6

1 2 3 4 5

1 6 7 1 3

ˆ ˆ ˆ ˆ ˆ ˆ( [ ( )], [ ( , )], [ ( , )],

ˆ ˆ ˆ ˆ ˆ[ ( , ), ( , )], [ ( )]).
S S S L L F F

B S SC S S

R R R R r R R r r R R r r

R R r r R r r R R r

=
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If the mean of îr (i.e., ˆ[ ]i ir E r= ) is substituted into (9), the mean of the 
software reliability estimate can be approximated as 

(11)   0 1,1 2 ,1 1,2 2 ,2 1,3 2 ,3

1,4 2 ,4 2 ,5 1,5 2 ,6

1 2 3 4 5

1 6 7 1 3

ˆ( ) ( [ ( )], [ ( , )], [ ( , )],

[ ( , ), ( , )], [ ( )]).
S S S L L F F

B S SC S S

E R R R R r R R r r R R r r

R R r r R r r R R r

≅
  

 
Fig. 4. An example of component-based software 

 

We assume that the uncertainties of the component reliability estimates are 
relatively small and the standard deviation, divided by the mean value, is less than 
0.3 [8]. We expand (10) at the nominal mean ˆ( )E R , using the first-order Taylor 
series. We obtain  

(12)   
7

1

ˆ ˆ ˆ( ) ( )i i i
i

R E R b r r
=

≅ + −∑ ,   

where   
1,1 2,1 1,4 2,4 1,4 2,50 0 0

1,1 2,1 1,4 2,4 1,4 2,5

1
1 1 1

,S S B S B SCS S S

S S B S B SC

R R R R R RR R R
b

R R r R R r R R r

∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂
= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

1,2 2,20

1,2 2,2

2
2

,L LS

L L

b
R RR

R R r

∂ ∂∂

∂ ∂ ∂
=  1,2 2,2 1,5 2,60 0

1,2 2,2 1,5 2,6

3
3 3

,L L S SS S

L L S S

R R R RR R
b

R R r R R r

∂ ∂ ∂ ∂∂ ∂
= +
∂ ∂ ∂ ∂ ∂ ∂

 

1,3 2,30

1,3 2,3

4
4

,F FS

F F

b
R RR

R R r

∂ ∂∂

∂ ∂ ∂
= 1,3 2,30

1,3 2,3

5
5

,F FS

F F

b
R RR

R R r

∂ ∂∂

∂ ∂ ∂
=  1,4 2,40

1,4 2,4

6
6

,B SS

B S

b
R RR

R R r

∂ ∂∂

∂ ∂ ∂
=  

1,4 2,50

1,4 2,5

7
7

.B SCS

B SC

R RR
R R

b
r

=
∂ ∂∂

∂ ∂ ∂
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All derivatives are evaluated at the nominal value of the component reliability 
estimates. For example, 

0 1,1
( )S SR R∂ ∂ =

0 1,1 1 2 3 4 5 6 7( , , , , , , )( ) |S S r r r r r r rR R∂ ∂ . Because  

0 1,1 1,2 1,3 1,4 1,51,2 3,4S S L F B SR p p R R R R R= , 
1,1 2,1S SR R= , 

1,2 2,2L LR R= , 
1,3 2,3F FR R= , 

1,4 2,4 2,54,6 7,10 4,8 8,10B S SCR p p R p p R= + , 
1,5 2,6S SR R= ,

2,1 1SR r= , 

( )
2,2 2,3 2 3 2,3 3,2 2 31LR p r r p p r r= − , 

2,3 4 5 4 5FR r r r r= + − , 
2,4 6,7 1 6SR p r r= , 

2,5 8,9 1 7SCR p r r= , 

2,6

2
10,11 1SR p r= ,   

the coefficient ib  can be obtained as 

1,2 1,3 1,4 1,5 1,1 1,2 1,3 1,51 1,2 3,4 1,2 3,4 4,6 6,7 8,9 7,10 6L F B S S L F Sb p p R R R R p p p p p p R R R R r= + +

1,1 1,2 1,3 1,51,2 3,4 4,8 8,10 7S L F Sp p p p R R R R r ,
1,1 1,3 1,4 1,5

2
2 1,2 2,3 3,4 3 2,3 3,2 2 3(1 )S F B Sb p p p R R R R r p p r r= − ,

1,1 1,3 1,4 1,5 1,1 1,2 1,3 1,4

2
3 1,2 2,3 3,4 2 2,3 3,2 2 3 1,2 3,4 9,10 1(1 ) 2S F B S S L F Bb p p p R R R R r p p r r p p p R R R R r= − + ,

1,1 1,2 1,4 1,54 1,2 3,4 5(1 )S L B Sb p p R R R R r= − , 
1,1 1,2 1,4 1,55 1,2 3,4 4(1 )S L B Sb p p R R R R r= − , 

1,1 1,2 1,3 1,56 1,2 3,4 4,6 6,7 7,9 1S L F Sb p p p p p R R R R r= , 
1,1 1,2 1,3 1,57 1,2 3,4 4,8 8,9 8,10 1S L F Sb p p p p p R R R R r= . 

We rearrange (12) and obtain 

(13)   ( )
7 72 2 2

1

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )( )i i i i j i i j j
i i j

R E R b r r b b r r r r
= ≠

− ≅ − + − −∑ ∑ .  

Taking the expectation of both sides of (13), the variance of the software 
reliability estimate is  

(14)    
7 7

2 2 2

1 1

ˆˆ ˆˆ ˆvar( ) [( ) ] var( )i i i i i
i i

R b E r r b r
= =

≅ − =∑ ∑ .  

We notice that only ir  and ˆ ˆvar( )ir  are needed for estimating ib  and ˆˆvar( )R . 
Therefore, our model does not require computation of the higher order moments of 
the component reliability estimates. Hence, it significantly simplifies the 
computation steps of ˆˆvar( )R . 

4. Experiments and analyses 

Our experiment has been carried out by using an ATM bank system [9]. The 
software system structure is shown in Fig. 5a. It consists of ten components and 
components 2c , 3c , 5c , 6c  and 9c  contains a natural fault respectively. Fig. 5b 
shows the connection structure flowchart of it.  

4.1. Software reliability estimate and comparison of the approaches to variance 
estimation 

According to these five faults, five versions of the software were constructed and 
each version contained one fault. We randomly generated inputs to estimate the 
reliability of each individual faulty component until it was converged. The 
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operational behaviours were collected to calculate the transition probability. 5c  is 
divided into sub-components 5,1c  and 5,2c . The reliability estimates are as follows: 

1̂r =1.000, 2̂r =0.987, 3̂r =0.998, 4̂r =1.000, 5,1r̂ =1.000, 5,2r̂ =0.996, 6̂r =0.994, 

7̂r =1.000, 8̂r =1.000, 9̂r =0.976, 10r̂ =1.000. The transition probabilities are shown in 
Fig. 5b.  

For the hierarchical model of ATM bank system, the modules or components 
at each layer are shown in Table 1. The software reliability estimate is 0.864 
according to the approach in Section 3. Due to limitations in space, the detail 
calculation process is omitted. 

The traditional approaches to variance estimation consider the dependence of 
the components, and need computation of higher order moments. These procedures 
are often time-consuming. If we assume that the components are s-independent, the 
estimation process will be facilitated, yet the variance of the software reliability 
estimate will be underestimated [1, 2]. Jin’s hierarchical decomposition approach 
[2] does not need the computation of higher order moments, but it is just for series-
parallel systems. Our approach can be suitable for complex structure systems with 
duplicated components. 
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Fig. 5. ATM bank system structure and its connection structure flowchart 
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Table 1. The set of modules or components for each layer  
Layer The set of modules or components 

0 S0={ S1,1, B1,2} 
1 S1,1={S2,1}, B1,2={S2,2, S2,3} 
2 S2,1={S3,1}, S2,2={S3,2}, S2,3={L3,3, B3,4} 
3 S3,1={S4,1}, S3,2={S4,2}, L3,3={L4,3}, B3,4={S4,4, S4,5, S4,6} 
4 S4,1={S5,1}, S4,2={S5,2}, L4,3={L5,3}, S4,4={S5,4}, S4,5={S5,5}, S4,6={BC5,6, S5,7} 
5 S5,1={S6,1}, S5,2={S6,2}, L5,3={L6,3}, S5,4={S6,4}, S5,5={S6,5}, BC5,6={S6,6,B6,7}, 

S5,7={S6,8} 
6 S6,1={S7,1}, S6,2={S7,2}, L6,3={L7,3}, S6,4={S7,4}, S6,5={S7,5}, S6,6={S7,6}, B6,7={B7,7, 

S7,8, B7,9}, S6,8={S7,10} 
7 S7,1={S8,1}, S7,2={S8,2}, L7,3={L8,3}, S7,4={S8,4}, S7,5={S8,5}, S7,6={S8,6}, B7,7={S8,7, 

S8,8 }, S7,8={S8,9}, B7,9={S8,10, S8,11}, S7,10={S8,12} 
8 S8,1={c1}, S8,2={c2,c10}, L8,3={c2,c3,c4}, S8,4={c2,c10}, S8,5={c10}, S8,6={c5}, 

S8,7={c3}, S8,8={c3,c7}, S8,9={c6}, S8,10={c8}, S8,11={c8,c9}, S8,12={c10} 
9 {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10} 

 

4.2. Sensitivity analysis 

Sensitivity analysis allows insight into the impact of changing the component 
reliability with respect to the software reliability. It can help to identify the critical 
components for a resource allocation. The critical point of software reliability R  
with respect to a component reliability ir  can be defined as ,R i iC R r= Δ Δ . The 
higher valued critical point indicates the critical component.  

The critical points of changing the component reliability are shown in Fig. 6. 
Take the increment of a component reliability from 0.8 up to 0.85 for example, we 
suppose that the initial reliability of each component is 0.8, and we start to increase 
each one from 0.8 to 0.85 in turn and observe its impact on the software reliability. 
We repeatedly change the different increments of each component and present the 
critical point of it. Fig. 6 shows that as the component reliability ir  increases, the 
value of ,R iC  becomes high. The criticality of all components increases sharply, 
except ,6RC  and ,7RC  in a small increment. The critical values of the components 

3c , 5,1c  and 5,2c are higher than those of other components and the critical values of  
the components 6c and 7c  are lower than those of the other components, which 
conforms to the actual application of an ATM bank system and is in accordance 
with the critical points of the software reliability with respect to the component 
reliabilities in [9]. The software reliability can be improved more efficiently if the 
critical components are reliable. 

5. Conclusions and future work 

For the present popular software with duplicated components, an approach to 
software reliability estimate and its variance estimation for complex structure 
systems is proposed, which has important applications in software reliability 
analysis with duplicated components. There is one condition in our approach, that 
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is, the uncertainties of the component reliability estimates must be relatively small. 
This condition is often satisfied in a risk-averse software design environment or 
during the manufacturing processes where the parameters often shifted around the 
nominal ones within a small range. The future work will be focused on the 
extension of the decomposition method to general software or manufacturing 
processes, where the condition of small variations is violated. 

 
Fig. 6. The criticality of changing the component reliability 
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